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Introduction

» Diffusion measurements are necessary to keep

track of beam evolution in phase space, and thus

minimize loss of particles.

* Current methods, like beam scraping, take hours
to measure diffusion. Transverse beam echoes
achieve this in milliseconds.

» Significance: testing integrability of IOTA ring
via diffusion measurements, and suggest
improvements.

« We perform simulations of the IOTA ring to:

» Study echo dependence on ring
parameters, and test echo theory.

» Test robustness of dynamic aperture
and echoes against coupling and
longitudinal momentum spread.

* Check echo generation in IOTA and
practicality for diffusion measurements.

Theory and Simulation

A beam echo occurs when particles recohere
again after decoherence due to nonlinear
elements (sextupoles in the IOTA ring).

* To observe echoes, we:

* Apply a dipole kick att = 0 turns.
* Apply a quad kick att =1 turns.
 Echo observed at t = 271 turns.

« Simulations of the IOTA lattice are performed In
MADX and C++.

* Dipole kicker strength: 7 mT
Quad kicker strength at r =25 mm: 10 mT

» Kicker pulse width less than revolution time (2us)
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Layout and Parameters
of IOTA Lattice
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Verification of 1-D Theory
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Top Left: Relative Echo amplitude vs. quad kick strength
Top Right: Final emittance vs. dipole kick strength

Bottom Left: Relative echo amplitude vs. initial emittance
Bottom Right: Theory predictions for echo amplitudes and final emittance

Dynamic Aperture and
Resonances

* Ensure higher dynamic aperture to minimize loss
of particles, and appropriate tune selection to
avoid resonances.
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Echo Amplitude vs. Tune
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Effects of Coupling
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 Echoes generated in IOTA at low intensities
(~100 pc) have relative amplitudes reaching 0.38
(saturation) at optimum quad strength. Good
enough for measuring diffusion and testing
integrability quickly.

* Dipole and quadrupole kicker field strengths are
of practical magnitudes.

 Echo amplitudes fairly robust against choice of
tunes and longitudinal momentum spread.

 Echo amplitude increases at smaller emittance.

« Strong coupling suppresses echo amplitudes.

* Simulations in agreement with nonlinear theory.

Future Work

* Insert misalignment and gradient errors to test
echo sensitivity.

* Addition of nonlinear inserts to the IOTA lattice.

 Use simulations to construct a complete 2-D
theory of echoes.

* Increase beam intensity to take space charge
effects into account.

« Calculate diffusion coefficients, and check for
multiple echoes to get accurate measurements.
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